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Abstract
Two implicit periodic structures in the solution of the sinh-Gordon
thermodynamic Bethe ansatz (TBA) equation are considered. The analytic
structure of the solution as a function of complex θ is studied to some extent
both analytically and numerically. The results hint at how the CFT integrable
structures can be relevant in the sinh-Gordon and staircase models. More
motivations are figured out for subsequent studies of the massless sinh-Gordon
(i.e. Liouville) TBA equation.

PACS numbers: 02.30.Ik, 05.50.+q, 11.25.Hf

1. Sinh-Gordon model

It seems that from the recent developments of the string theory, there are some persistent
requests about a better understanding of the two-dimensional sigma models with non-
compact (in particular singular) target spaces. Physical properties of such models are
expected to be quite different from those of the better studied compact sigma models. It
is therefore a challenge for the two-dimensional integrable field theory community to reveal
the corresponding peculiarities and new features.

The two-dimensional sinh-Gordon model (ShG) is defined by the (Euclidean) action

AShG =
∫ [

1

4π
(∂aφ)2 + 2µ cosh(2bφ)

]
d2x. (1.1)

I believe that this model can be considered as ‘a model’ of (suitably perturbed) non-compact
sigma models in the sense that its properties are considerably different from those of the
perturbed rational conformal field theories, these differences being sometimes quite similar to
those between non-compact and compact sigma models.
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In (1.1), µ is a dimensional (of dimension µ ∼ [mass]2+2b2
) coupling constant which

determines the scale in the model and b is the dimensionless ShG parameter. For the beginning
I suppose it to be real and non-negative. The case b = 0 turns to be somewhat singular for
the subsequent considerations, and here the study is restricted to positive values 0 < b < ∞
only. It is also convenient to use different parameters

Q = b + 1/b (1.2)

and

p = b

Q
= b2

1 + b2
(1.3)

instead of b.
The perturbing operators exp(±2bφ) in (1.1) have negative dimension � = −b2. To

make the coupling µ a strict sense, we need to fix a normalization of these operators. Here,
they are implied to be normal ordered w.r.t. the massless (unperturbed) vacuum in the way
that in the unperturbed theory

〈
e2bϕ(x1) . . . e2bϕ(xn) e−2bϕ(y1) . . . e−2bϕ(yn)

〉
µ=0 =

∏
i,j |xi − yj |4b2

∏
i>j (|xi − xj ||yi − yj |)4b2 . (1.4)

The model is known to be integrable and can be solved for many important characteristics.
In particular, its factorized scattering theory is known since long [1, 2]. The spectrum consists
of only one neutral particle B(θ) subject to a factorized scattering with two-particle amplitude:

S(θ) = sinh θ − i sin πp

sinh θ + i sin πp
, (1.5)

With the normalization (1.4), the mass m of this particle is related to the scale parameter µ as
[3]

πµ
�(b2)

�(1 − b2)
= [mZ(p)]2+2b2

, (1.6)

where

Z(p) = 1

8
√

π
pp(1 − p)1−p�

(
1 − p

2

)
�

(p

2

)
. (1.7)

Note that the scattering theory is invariant under the (weak–strong coupling) duality
transformation b → 1/b which brings p → 1−p. This means that the physical content of the
model remains unchanged up to the overall mass scale. Since the combination (1.7) is again
invariant under p → 1 − p, the mass scale also remains unchanged if the coupling constant
µ is simultaneously substituted by the ‘dual’ coupling constant µ̃ related to µ as follows:

(
πµ

�(b2)

�(1 − b2)

)1/b

=
(

πµ̃
�(1/b2)

�(1 − 1/b2)

)b

. (1.8)

Therefore, the sinh-Gordon model is completely invariant under the duality b → 1/b; µ → µ̃.
Due to this symmetry, it is sufficient to consider only the region 0 < b2 � 1 or 0 < p � 1/2.

The infinite volume bulk vacuum energy of the model is also known exactly [4]. In terms
of the particle mass m, it is given by the following apparently self-dual expression:

E = m2

8 sinh πp
. (1.9)
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2. TBA equation

In contrast to the on-mass-shell data of ShG quoted above, the off-mass-shell characteristics
such as the correlation functions (with the exception of the vacuum expectation values of some
local fields [5, 6] and their matrix elements between the asymptotic states [7]) are not known
exactly.

Some progress can be made for the finite size effects where the problem is reduced to
a nonlinear integral equation known as the thermodynamic Bethe ansatz (TBA) equation.
Namely, consider the ground state energy E(R) of the finite-size ShG model placed on a circle
of finite circumference R. In the TBA framework, it appears as

E(R) = − m

2π

∫
cosh θ log(1 + e−ε(θ)) dθ. (2.1)

It is convenient to introduce also the R-dependent effective central charge ceff(R) as

ceff(R) = −6R

π
E(R). (2.2)

In (2.1), ε(θ) is the solution of the TBA equation

mR cosh θ = ε + ϕ ∗ log(1 + e−ε(θ)), (2.3)

where ∗ denotes the θ convolution. The kernel ϕ(θ) is related to the ShG scattering data (1.5):

ϕ(θ) = − i

2π

d

dθ
log S(θ) = 1

2π

4 sin πp cosh θ

cosh 2θ − cos 2πp
. (2.4)

The Fourier transform of the kernel reads

ϕ(ω) =
∫

eiωθϕ(θ) dθ = cosh(aπω/2)

cosh(πω/2)
, (2.5)

where the parameter

a = 1 − 2p (2.6)

is simply reflected a → −a under the dualily p → 1 − p and therefore can be taken
non-negative 0 � a < 1.

The following conclusion is readily made from the structure of the integral equation (2.3).
(i) Function ε(θ) is even ε(θ) = ε(−θ) and analytic in the strip |Im θ | < π/2 − πa/2.

At Re θ → ∞ in this strip, it has the asymptotic ε(θ) ∼ m R eθ/2. Therefore, the function

Y (θ) = exp(−ε(θ)) (2.7)

is analytic and non-zero in this strip and at Re θ → ∞ behaves as

Y (θ) ∼ exp(−m R eθ/2). (2.8)

The asymptotic at Re θ → −∞ is related to (2.8) by the symmetry Y (θ) = Y (−θ). Let us
define another even function

X(θ) = exp

[
− mR

2 sin πp
cosh θ +

∫
log(1 + Y (θ ′))
cosh(θ − θ ′)

dθ ′

2π

]
, (2.9)

which is obviously analytic and non-zero in the strip |Im θ | < π/2 and at Re θ → ∞ in this
strip

X(θ) ∼ exp

(
− mR

4 sin πp
exp θ

)
. (2.10)

From the TBA equation, it follows that

X(θ + iaπ/2)X(θ − iaπ/2) = Y (θ). (2.11)
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(ii) In fact on the real axis, Y (θ) is real and positive and therefore we expect a strip
|Im θ | < ε with some finite ε > 0 where 1 + Y (θ) �= 0. Therefore, the analyticity condition
for X(θ) can be extended to the strip |Im θ | < π/2 + ε. This is enough to prove the relation

X(θ + iπ/2)X(θ − iπ/2) = 1 + Y (θ). (2.12)

The functional equation

X(θ + iπ/2)X(θ − iπ/2) = 1 + X(θ + iaπ/2)X(θ − iaπ/2) (2.13)

follows. This relation allows us to extend the original analyticity strip |Im θ | < π/2 + ε to the
strip |Im θ | < 3π/2 and, as we will see before long, to the whole complex plane of θ so that
X(θ) is an entire function of θ . Note that from (2.13) it follows that the asymptotic (2.10)
holds in the larger strip |Im θ | < π . The asymptotic outside this strip is more complicated.

(iii) As a consequence, Y (θ) is also an entire function of θ and satisfies the following
functional relation:

Y (θ + iπ/2)Y (θ − iπ/2) = (1 + Y (θ + iaπ/2))(1 + Y (θ − iaπ/2)). (2.14)

The last equation is very similar to the functional relations appearing in the TBA study of
the integrable perturbed rational conformal field theories (the so-called Y systems). Typically,
such Y systems imply a periodicity of Y functions in θ with some imaginary period related to
the scale dimension � of the perturbing operator (see e.g. [8, 9]). This periodicity in order
entails a special ‘perturbative’ structure of the short distance R → 0 behaviour of the ground
state energy E(R). Namely, up to one exceptional term, it is a regular expansion in powers of
R2−2�:

E(R) = −EvacR − π

6R

∞∑
n=0

cnR
(2−2�)n, R → 0, (2.15)

where Evac is the infinite volume vacuum energy of the model. Unlike this typical situation,
the Y system (2.14) (or the X system (2.13)) does not imply any apparent periodic structure of
Y (θ) in θ . As a manifestation of this peculiarity, the R → 0 behaviour of E(R) is different
from (2.15) and includes softer logarithmic corrections [10]:

E(R) = −ER − π

6R

(
1 − 3π2p(1 − p)

2 log2 R
+ O(log−3 R)

)
, R → 0. (2.16)

The purpose of the following two sections is to reveal two hidden periodic structures (with
different periods) of the Y system (2.14).

3. Discrete Liouville equation

In this section, I discuss the following two-dimensional nonlinear finite-difference equation
for the function X(u, v):

X(u + 1, v)X(u − 1, v) = 1 + X(u, v + 1)X(u, v − 1), (3.1)

which is apparently resemblant of the functional X system (2.13). In the following section,
we will see how some of the results for (3.1) can be specialized to our TBA problem.
Equation (3.1) is a particular case of a Hirota difference equation [11]. The constructions of
this section can be found in [12] (see also [13]) where a more general difference system is
analysed. They also appeared in a quite close context in [14].

Equation (3.1) can be considered as a discretization of the hyperbolic Liouville equation

∂2
uϕ − ∂2

v ϕ = −e2ϕ. (3.2)
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Indeed, let X(u, v) = exp(−ϕ(u, v)) and let ϕ(u, v) be large and negative. Then,
equation (3.1) is approximated by

ϕ(u + 1, v) + ϕ(u − 1, v) − ϕ(u, v + 1) − ϕ(u, v − 1) = − exp(ϕ(u, v + 1) + ϕ(u, v − 1)).

(3.3)

In the long-wave limit, this is reduced to (3.2). As we will see below, equation (3.1) is in many
respects very similar to the Liouville equation. It seems quite natural to call it the discrete
Liouville equation [15].

Let me recall the well-known construction of a local solution to equation (3.2).
(1a) It is convenient to use the light cone variables x+ = u + v and x− = u − v so that

∂+ = (∂u + ∂v)/2, ∂− = (∂u − ∂v)/2 and (3.2) reads

4∂+∂−ϕ = −e2ϕ. (3.4)

Let ϕ be a local solution of (3.4). Define

t = −(∂+ϕ)2 + ∂2
+ϕ, t̃ = −(∂−ϕ)2 + ∂2

−ϕ. (3.5)

As a consequence of equation (3.4), we have

∂−t = ∂+ t̃ = 0 (3.6)

so that t (x+) and t̃ (x−) are respectively functions of only x+ and x−.
(2a) The field X = exp(−ϕ) satisfies two linear differential equations:(

∂2
+ + t (x+)

)
X(u, v) = 0,

(
∂2
− + t̃ (x−)

)
X(u, v) = 0. (3.7)

(3a) Let Q±(x) and Q̃±(x) be linearly independent solutions to the ordinary differential
equations (

∂2
x + t (x)

)
Q±(x) = 0,

(
∂2
x + t̃ (x)

)
Q̃±(x) = 0, (3.8)

where the coefficient functions t (x) and t̃ (x) are determined by equation (3.5). Suppose these
solutions are normalized in the way that

∂xQ+(x)Q−(x) − Q+(x)∂xQ−(x) = 1/2,

∂xQ̃+(x)Q̃−(x) − Q̃+(x)∂xQ̃−(x) = 1/2.
(3.9)

A local solution of (3.4) can be constructed as

exp(−ϕ(u, v)) = Q+(x
+)Q̃+(x

−) + Q−(x+)Q̃−(x−). (3.10)

(4a) Introduce the functions

F(x) = Q+(x)

Q−(x)
, G(x) = −Q̃−(x)

Q̃+(x)
. (3.11)

The solution (3.10) can be rewritten as

exp 2ϕ(u, v) = 4F ′(x+)G′(x−)

(F (x+) − G(x−))2
. (3.12)

Note also that in terms of F and G

t (x) = −2{F(x), x}, t̃(x) = −2{G(x), x}, (3.13)

where

{f (x), x} = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

(3.14)

is the Schwarz derivative.
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Now let us turn to the discrete Liouville equation (3.1). Defining, similar to
equation (2.11),

Y (u, v) = X(u, v + 1)X(u, v − 1), 1 + Y (u, v) = X(u + 1, v)X(u − 1, v), (3.15)

we arrive at the finite-difference equation analogous to (2.14):

Y (u + 1, v)Y (u − 1, v) = (1 + Y (u, v + 1))(1 + Y (u, v − 1)). (3.16)

(1b) Introduce

T (u, v) = X(u + 1, v + 1) + X(u − 1, v − 1)

X(u, v)
,

T̃ (u, v) = X(u + 1, v − 1) + X(u − 1, v + 1)

X(u, v)
.

(3.17)

As a consequence of equation (3.1), we obtain

T (u + 1, v − 1) = T (u, v), T̃ (u + 1, v + 1) = T̃ (u, v) (3.18)

so that T = T (u + v) and T̃ = T̃ (u − v). In the continuous limit, these objects are related to
(3.5) as T (u) = 2 − 4t (u) + · · · and T̃ (u) = 2 − 4t̃ (u) + · · · [14].

(2b) Equation (3.17) can be rewritten as (similar to (3.7))

X(u + 1, v + 1) + X(u − 1, v − 1) = T (u + v)X(u, v),

X(u + 1, v − 1) + X(u − 1, v + 1) = T̃ (u − v)X(u, v).
(3.19)

(3b) Let Q±(u) and Q̃±(u) be linearly independent solutions of the second-order finite-
difference equations

Q±(u + 2) + Q±(u − 2) = T (u)Q±(u),

Q̃±(u + 2) + Q̃±(u − 2) = T̃ (u)Q̃±(u),
(3.20)

normalized by the ‘quantum Wronskians’

Q+(u + 1)Q−(u − 1) − Q+(u − 1)Q−(u + 1) = 1,

Q̃+(u + 1)Q̃−(u − 1) − Q̃+(u − 1)Q̃−(u + 1) = 1.
(3.21)

Then, it is verified that

X(u, v) = Q+(u + v)Q̃+(u − v) + Q−(u + v)Q̃−(u − v) (3.22)

is a local solution of the discrete Liouville equation (3.1).
(4b) Introduce the functions

F(u) = Q+(u)

Q−(u)
, G(u) = −Q̃−(u)

Q̃+(u)
, (3.23)

which can be used to present the local solution (3.22) in the form

Y (u, v) = (F (u + v + 1) − G(u − v − 1))(F (u + v − 1) − G(u − v + 1))

(F (u + v + 1) − F(u + v − 1))(G(u − v + 1) − G(u − v − 1))
,

1 + Y (u, v) = (F (u + v + 1) − G(u − v + 1))(F (u + v − 1) − G(u − v − 1))

(F (u + v + 1) − F(u + v − 1))(G(u − v + 1) − G(u − v − 1))
.

(3.24)

Let me also mention the discrete analogue of the Schwarz derivative (3.13):

T (u + 1)T (u − 1) = (F (u + 3) − F(u − 1))(F (u + 1) − F(u − 3))

(F (u + 3) − F(u + 1))(F (u − 1) − F(u − 3))
. (3.25)
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4. Application to TBA

The above constructions for the discrete Liouville equation can be translated for the ShG X
system (2.13) we are interested in. Let us require the following periodicity condition for
X(u, v) in (3.1):

X(u + a, v + 1) = X(u, v), (4.1)

with some parameter a (at this point, we start to diverge from the lines of [14]). With this
periodicity, equation (3.1) reads

X(u + 1, v)X(u − 1, v) = 1 + X(u + a, v)X(u − a, v). (4.2)

Here, v can be considered as a parameter. Suppressing this redundant dependence and rescaling
u as

θ = iπu/2, (4.3)

we are back to the ShG X system in the form (2.13).
From X(θ), the two functions T (θ) and T̃ (θ) are readily restored as

T (θ) = X(θ + iπ(1 − a)/2) + X(θ − iπ(1 − a)/2)

X(θ)
,

T̃ (θ) = X(θ + iπ(1 + a)/2) + X(θ − iπ(1 + a)/2)

X(θ)
.

(4.4)

The ‘holomorphic’ property (3.18) is translated to the following periodicity of these functions:

T (θ + iπ(1 + a)/2) = T (θ), T̃ (θ + iπ(1 − a)/2) = T̃ (θ). (4.5)

Note that the period iπ/(1 + b2) of T corresponds to the negative dimension � = −b2 of the
perturbing operator in (1.1). As can be anticipated from the self-duality of ShG, the second
period iπb2/(1 + b2) of T̃ is related to the dimension �̃ = −b−2 of the ‘dual’ exponentials
exp(±2φ/b).

As is discussed in section 2, X(θ) is analytic and non-zero in the strip |Im θ | < π/2 and
analytic in the larger strip |Im θ | < 3π/2. Therefore, T (θ) and T̃ (θ) are analytic in the strip
|Im θ | < π/2 and by periodicity (4.5) they are entire functions of θ . It follows from (4.4) that
X(θ) is an entire function of θ too.

The asymptotics at Re θ → ∞ follow from (2.10) and (4.4):

T (θ) ∼ exp

(
mR exp(θ − iπ(1 − p)/2)

4 cos(πp/2)

)
in the strip 0 < Im θ < π(1 + a)/2,

T̃ (θ) ∼ exp

(
mR exp(θ − iπp/2)

4 sin(πp/2)

)
in the strip 0 < Im θ < π(1 − a)/2.

(4.6)

The real axis Im θ = 0 is a Stokes line and here

T (θ) ∼ 2 exp

(
mR

4
tan(πp/2) eθ

)
cos

(
mR

4
exp θ

)
,

T̃ (θ) ∼ 2 exp

(
mR

4
cot(πp/2) eθ

)
cos

(
mR

4
exp θ

)
.

(4.7)

The Re θ → ∞ asymptotic in the whole plane of θ is restored from periodicity (4.5).
Following (4.7) both T and T̃ have an infinite number of zeros on the real axis located at
θ = ±θn, n = 1, 2, . . . ,∞, with θn ∼ log(2πn/mR) + O(1/n) at n → ∞. The half-period
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shifted functions T (θ + iπ(1 − p)/2) and T̃ (θ + iπp/2) are also real at real θ , and at θ → ∞
they behave as

T (θ + iπ(1 − p)/2) ∼ exp

(
mR

4 cos(πp/2)
eθ

)
,

T̃ (θ + iπp/2) ∼ exp

(
mR

4 sin(πp/2)
eθ

)
.

(4.8)

Analytic properties of T and T̃ allow the following convergent expansions:

T (θ) =
∞∑

−∞
Tn exp(2nQbθ), T̃ (θ) =

∞∑
−∞

T̃ n exp(2nQθ/b), (4.9)

with real Tn and T̃ n. From the symmetry of the original TBA equations, T and T̃ are both
even functions of θ , so in our present case Tn = T−n and T̃ n = T̃ −n. These coefficients are
the Fourier components of the functions T (θ) and T̃ (θ):

Tn =
∫

↑
T (θ) exp(−2nQbθ)

bQ dθ

iπ
, T̃ n =

∫
↑
T̃ (θ) exp(−2nQθ/b)

Q dθ

iπb
. (4.10)

The integrals here are over the periods iπ/(Qb) and iπb/Q of T (θ) and T̃ (θ), respectively.
The saddle-point approximations for these integrals allow us to read off the leading large n
behaviour of the coefficients Tn and T̃ n from the asymptotics (4.6):

Tn ∼ (−)n

√
bQ

π
n−2Qbn−1/2

(
e

mR

8πbQ cos(πp/2)

)2Qbn

,

T̃ n ∼ (−)n

√
Q

πb
n−2Qn/b−1/2

(
e

bmR

8πQ sin(πp/2)

)2Qn/b

.

(4.11)

So far the constructions were explicitly based on the integral equation (2.3). The rest of
the section is more speculative. Suppose that for T (θ) and T̃ (θ) constructed as in (4.4), we
can find Q±(θ) and Q̃±(θ), which solve

Q±(θ + iπ) + Q±(θ − iπ) = T (θ)Q±(θ),

Q̃±(θ + iπ) + Q̃±(θ − iπ) = T̃ (θ)Q̃±(θ),
(4.12)

and are the ‘Bloch waves’ with respect to the periods of T and T̃ , respectively,

Q±(θ + iπ(1 + a)/2) = exp(±2iπP/Q)Q±(θ),

Q̃±(θ + iπ(1 − a)/2) = exp(±2iπP/Q)Q̃±(θ),
(4.13)

with some Floquet index P. Let these be normalized by the quantum Wronskians

Q+(θ + iπ/2)Q−(θ − iπ/2) − Q+(θ − iπ/2)Q−(θ + iπ/2) = 1,

Q̃+(θ + iπ/2)Q̃−(θ − iπ/2) − Q̃+(θ − iπ/2)Q̃−(θ + iπ/2) = 1.
(4.14)

Then formally,

X(θ) = Q+(θ)Q̃+(θ) + Q−(θ)Q̃−(θ) (4.15)

solves equation (4.4) as well as the X system (2.13).
Unfortunately, at present I know no effective means to construct these Q functions.

Moreover, there are serious doubts that the objects satisfying both (4.12) and (4.13) can be
constructed in any sense, at least at rational values of b2. I hope to say something more definite
on this point in the near future.
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5. Large Re θ asymptotics

Let me comment a little more about the Re θ → ∞ asymptotics (with Im θ fixed) of the
function X(θ) in the whole complex plane. In principle, it can be restored from asymptotic
(2.10) in the strip |Im θ | � π/2 using the functional relation (2.13) or, more conveniently,
relations (4.4) together with asymptotics (4.6). The asymptotics is always of the form

X(θ) ∼ exp(A(Im θ) exp(Re θ)), (5.1)

with some complex function A(η) of the real variable η = Im θ . Apparently, Re A(η) controls
the rate of growth of the absolute value of X. At |η| < π/2, we have

A(η) = − mR

4 sin πp
eiη. (5.2)

It follows from (4.4) that A(η) satisfies two functional relations

A(η + π(1 − a)/2) =
{
A(η) + σ(η) if Re(A(η) + σ(η)) > Re A(η + π(1 − a)/2)

A(η + π(1 − a)/2) otherwise

A(η + π(1 + a)/2) =
{
A(η) + σ̃ (η) if Re(A(η) + σ̃ (η)) > Re A(η + π(1 + a)/2)

A(η + π(1 + a)/2) otherwise,

(5.3)

where the functions σ(η) and σ̃ (η) control the asymptotics of T (θ) and T̃ (θ), respectively.
They are defined as

σ(η) = mR

4 cos(πp/2)
exp(iη − iπ(1 − p)/2) at 0 � η < (1 + a)/2

σ̃ (η) = mR

4 sin(πp/2)
exp(iη − iπp/2) at 0 � η < (1 − a)/2,

(5.4)

and continued outside these regions periodically as σ̃ (η + π(1 − a)/2) = σ̃ (η) and
σ(η +π(1 +a)/2) = σ(η). Both σ(η) and σ̃ (η) jump by −imR/2 at η = π(1 +a)n/2, n ∈ Z,
and η = π(1 + a)n/2, n ∈ Z, respectively. This corresponds to the limiting density of zeros
prescribed by (4.7).

A common solution to (5.3) exists. Generally, the solution is discontinuous at all values
η = ±π(m(1 + a)/2 + n(1 − a)/2) with arbitrary positive integers n and m. At each such
point, the imaginary part Im A jumps down by −mR/2 indicating an asymptotic line of
accumulation of zeros of X(θ), the asymptotic density being the same as that of the functions
T and T̃ (4.7). The real part of A at these points is continuous itself but has discontinuities in
the first derivative. The first Stokes line appears at η = π .

At large η, the structure is qualitatively different depending on the arithmetic nature of
the parameter b2. If it is a rational number, the periods of T and T̃ are commensurable. Some
of the discontinuities merge forming multiple jumps in the imaginary part. The solution A(θ)

bears a regular ‘quasiperiodic’ structure with the common period of T and T̃ . For irrational
b2, the periods are incommensurable and as η → ∞ the singularities are more and more
dense, the solution having quite irregular behaviour.

In figure 1, the real and imaginary parts of A(η) are plotted for the simplest (self-
dual) case b = 1. Both periods are equal to π/2. The discontinuities are located at
η = ±π(n + 1)/2, n = 1, 2, . . . , where the imaginary part jumps by −mRn/2. In contrast to
the location of zeros of T, zeros of X cannot lie exactly on the lines Im θ = const, at least for
the first line η = π . Indeed, in the case b2 = 1 it follows from the functional relation that at
real θ ,

|X(θ + iπ)|2 = X2(θ) + T 2(θ), (5.5)

which is strictly positive.
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Figure 1. Real and imaginary parts of A(η)/mR at b2 = 1.
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Figure 2. Real and imaginary parts of A(η)/mR at b2 = 1/2.

Another rational situation b2 = 1/2 corresponds to the periods π/3 and 2π/3. The
function A(η) is plotted in figure 2. The structure is again quite regular, the discontinuities
occurring at η = π + nπ/3, n = 1, 2, . . . , the first two discontinuities in Im A being −mR/2,
the next two being twice of this amount, then next two being three times, and so on.

With irrational b2 the picture is far less regular. To illustrate what happens when b2

slightly deviates from a simple rational number, in figure 3 we plot A(η) for b2 = 0.8086 . . . ,

which is reasonably close to 1. Comparing with figure 1, we see that the first discontinuity at
η = π remains basically the same while the second (double) discontinuity at η = 3π/2 splits
into two simple jumps, the third (triple) splits into three simple jumps, and so on. At some
point, these splitted groups come to overlap and the picture turns irregular.
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Figure 3. Real and imaginary parts of A(η)/mR at b2 = 0.8086 . . . .

6. Staircase situation

The staircase model [10] is a formal analytic continuation of ShG to complex values of
the parameter b such that b−1 = b∗. Although the physical content of this continuation is
not completely clear from the field theory point of view, the TBA equation (2.3) remains
completely sensible and this continuation of (2.3) can be studied on its own footing. The
effective central charge (2.2) is still real and sometimes develops quite intriguing patterns (see
[10]).

In [10], the complex b has been parametrized as follows:

b2 = 1 + 2iθ0/π

1 − 2iθ0/π
, (6.1)

with real 0 � θ0 < ∞. The parameter p of (1.3) now reads

p = 1

2
+

iθ0

π
, (6.2)

while 1 − p = p∗ and a defined in (2.6) is purely imaginary a = −2iθ0/π . The TBA kernel
(2.4) is real and reads

ϕ(θ) = 1

2π

(
1

cosh(θ + θ0)
+

1

cosh(θ − θ0)

)
, (6.3)

with the Fourier transform

ϕ(ω) = cos(ωθ0)

cosh(πω/2)
. (6.4)

After this substitution the integral equation (2.3) determines real-analytic functions
ε(θ), Y (θ) and, through (2.9), real-analytic and symmetric X(θ) with the asymptotic behaviour
at Re θ → ∞ in the strip −π/2 < Im θ < π/2:

X(θ) ∼ exp

(
− mR

4 cosh θ0
exp θ

)
. (6.5)

The functional equation (2.13) now reads

X(θ + iπ/2)X(θ − iπ/2) = 1 + X(θ + θ0)X(θ − θ0). (6.6)
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Figure 4. Real and imaginary parts of σ(η)/mR (a) and σ̃ (η)/mR (b). The staircase example for
θ0 = 1.

All the considerations of section 4 can be repeated literally. X(θ) is still an entire function as
well as T (θ) and T̃ (θ) defined in equation (4.4), and asymptotic (6.5) can be extended to the
strip −π < Im θ < π . The difference is that the periods of T (θ) and T̃ (θ),

T (θ + τ) = T (θ), τ = iπ(1 + a)/2 = iπ/2 + θ0,

T̃ (θ + τ̃ ) = T̃ (θ), τ̃ = iπ(1 − a)/2 = iπ/2 − θ0,
(6.7)

are now complex τ = −τ̃ ∗. The functions T (θ) = T (−θ) and T̃ (θ) = T̃ (−θ) are still
symmetric but no more real analytic. Instead

T ∗(θ) = T̃ (θ∗). (6.8)

Expansions similar to (4.9),

T (θ) =
∞∑

−∞
Tn exp(2iπnθ/τ), T̃ (θ) =

∞∑
−∞

T̃ n exp(2iπnθ/τ̃ ), (6.9)

are convergent and Tn = T−n, T̃ n = T̃ −n. Instead of being real as in the real b case, these
coefficients are complex conjugate T ∗

n = T̃ n.
In the strip 0 < Im θ < π/2, the following Re θ → ∞ asymptotics hold for T and T̃ :

T (θ) ∼ X(θ + τ̃ )/X(θ) ∼ exp

(
mR(1 − i exp(−θ0))

4 cosh θ0
eθ

)
,

T̃ (θ) ∼ X(θ + τ)/X(θ) ∼ exp

(
mR(1 − i exp(θ0))

4 cosh θ0
eθ

)
.

(6.10)

The asymptotic changes at the Stokes line along the real axis where

T (θ) ∼ 2 exp

(
mR(1 + i sinh θ0)

4 cosh θ0
eθ

)
cos

(
mR

4
eθ

)
,

T̃ (θ) ∼ 2 exp

(
mR(1 − i sinh θ0)

4 cosh θ0
eθ

)
cos

(
mR

4
eθ

)
,

(6.11)
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Figure 5. A staircase example of A(η)/mR at θ0 = 1.

and we again observe an infinite sequence of zeros accumulating at infinity, the density being
the same as in the real b case of section 5. In the strips πn/2 < Im θ < π(n + 1)/2 (with an
arbitrary integer n), the Re θ → ∞ asymptotics follow from periodicity (6.7). In particular,
along the lines Im θ = inπ/2 (with any integer n), we will have

T (θ) ∼ 2 exp

(
mR(1 + i sinh θ0)

4 cosh θ0
eRe θ−nθ0

)
cos

(
mR

4
eRe θ−nθ0

)
,

T̃ (θ) ∼ 2 exp

(
mR(1 − i sinh θ0)

4 cosh θ0
eRe θ+nθ0

)
cos

(
mR

4
eRe θ+nθ0

)
.

(6.12)

The functions σ(η) and σ̃ (η) which control the asymptotics of T and T̃ at Re θ → ∞,

T (θ) ∼ exp(σ (Im θ) eRe θ ), T̃ (θ) ∼ exp(σ̃ (Im θ) eRe θ ), (6.13)

are plotted in figure 4 for the case θ0 = 1. It is enough to present them for η � 0 since
σ(−η) = σ̃ ∗(η). The imaginary part of σ(η) jumps at the points η = nπ/2 by the amount
−mR exp(−nθ0)/2, in accord with the density of zeros predicted by (6.12). Unlike the
previously considered case of real b, in the staircase situation the zeros of T and T̃ are not
located exactly at the lines Im θ = inπ/2 but slightly shifted in the imaginary direction (we
will observe this deviation numerically in the following section) and approach these lines
asymptotically as Re θ → ∞.

Note also that T (θ) is a single-valued function of ξ = exp(2iπθ/τ). In the complex plane
of this variable, the asymptotic lines of accumulation of zeros Im θ = 0, Re θ → ±∞ are
parts of the spiral |ξ | = exp(π arg ξ/2θ0) near which the zeros become dense at |ξ | → ∞ or
|ξ | → 0, the density growing as |ξ |±(1/4+θ2

0 /π2). Therefore, the large (or small) |ξ | asymptotic
of T (ξ) at fixed arg ξ is rather complicated.

The large Re θ asymptotic of X(θ) at fixed η = Im θ is controlled by the function A(η)

(see equation (5.1)). An example corresponding to the case θ0 = 1 is presented in figure 5.
At the points η = ±π(n + 1)/2, n = 1, 2, . . . , the imaginary part of A(η) has discontinuities
equal to −mR sinh(nθ0)/(2 sinh θ0). These amounts determine the asymptotic density of zeros
of X(θ) along these lines.
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7. Numerics

The integral equation (2.3) can be easily solved numerically e.g. by iterations. The iterations
happen to be well convergent (the convergence is somewhat slower if R approaches to 0 or
the parameter p is taken to be very small). In the strip |Im θ | < π/2, the function X(θ) can
be computed using the integral representation (2.9). This allows us to continue X(θ) to the
whole complex plane iterating relation (2.13) (in fact at large Im θ it is more convenient to
first evaluate T (θ) inside its period and then use (4.4)). In the rest of this section, we will use
the logarithmic scale parameter x = log(mR/2) instead of R.

7.1. Self-dual point b2= 1

In figure 6, several examples of the function X(θ) on the real axis of θ are plotted for different
values of x. The function is typically bell-shaped. As x becomes large negative, the width of
the support of the bell as well as its height grows proportionally to −x. No plateau typical
for perturbed rational CFTs is developed. Few samples of T (θ) (which is the same as T̃ (θ)

at the self-dual point) are presented in figure 7. At x negative and large enough, T develops a
plateau in the ‘central region’ x < θ < −x of the height which slowly approaches to 2 as −x

grows. We will comment more about this approach below. Outside the central region, it starts
to oscillate with growing amplitude and frequency. The approach to the asymptotic (4.7) is
very fast.

Due to the symmetry T (θ) = T (−θ), this function is real on the imaginary axis too. A
couple of examples are plotted in figure 8. At x essentially negative, when the plateau is well
developed in the central region, the mean value T0 (see equation (4.9)) is very close to the
plateau height, the oscillations around (determined mainly by T1) being very small (T1 ∼ R4,
see equation (8.9)).

The function T (θ) is real also at the half-period line Im θ = π/4. Again, there is a plateau
region (at large negative x) of the same height as on the real axis. Then, T (θ + iπ/4) remains
positive and grows following the asymptotic (4.8) (see figure 9). Numerical computations in
the whole period strip 0 � Im θ < π/2 show no sign of other zeros than those on the real
axis.
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In figure 10, few examples of |X(θ)| in the complex plane at different values of Re θ are
plotted versus Im θ (for x = 0). The specific values Re θ = 1.22 and Re θ = 2.25 are chosen
close to the positions of the first two zeros of T (θ) on the real axis. The deeps near Im θ = π

and Im θ = 3π/2 indicate a presence of zeros of X(θ) nearby.
More precise positions of zeros of X(θ) near the line Im θ = π (for the same value x = 0)

are exemplified in figure 11. In fact, all these zeros are inside the strip |Im θ | < π . Only
the first zero deviates notably from the line Im θ = π . The imaginary parts of next zeros are
already very close to π and tend to this value very fast.

7.2. Rational points

As an example of a rational point, we take the simplest case b2 = 1/2. The periods of T (θ)

and T̃ (θ) are commensurable and equal to 2iπ/3 and iπ/3, respectively. In fact, in this case,
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there is no need to study separately T and T̃ since, as is readily derived from (2.13), they are
bound up by the relation

T̃ (θ) = T (θ)T (θ + iπ/3) − 2. (7.1)

It should be noted that similar finite degree functional relations between T and T̃ exist for any
rational b2. For example, at b2 = 1/3 the periods of T and T̃ are 3iπ/4 and iπ/4 respectively
and

T̃ (θ) = T (θ)T (θ + iπ/4)T (θ + iπ/2) − T (θ) − T (θ + iπ/4) − T (θ + iπ/2). (7.2)

Numerical patterns of T (θ), T̃ (θ) and X(θ) are essentially the same as for b2 = 1.
I will only show few plots of |X(θ)| in the complex plane along the lines Im θ =
π, 4π/3, 5π/3, 2π, 7π/3, etc to illustrate the mechanism of multiplication of the zeros’ density
in the asymptotics Re θ → ∞ as required by the prediction of figure 2. In figure 12, |X(θ)|
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is plotted at Re θ in the vicinity of the real position of the first zero in T (θ) at θ = 1.2241 . . .

(the case x = 0 is taken as an example). At Im θ = π and 4π/3, the picture indicates simple
zeros located closely to this point in Re θ and slightly displaced in the imaginary direction.
At Im θ = 5π/3 and 2π , the zeros are split into two closely located ones again near the same
position in the real direction. For Im θ = 7π/3 and 8π/3, there are triplets of close zeros. In
figure 13, the same is exemplified near the next zero of T (θ) at θ = 2.2527 . . . . It is already
seen that the scale of splitting becomes very small with Re θ growing and such zero multiplets
look like multiple zeros if the numerical resolution is not enough.
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7.3. General real b2

In general, the periods of T (θ) and T̃ (θ) are incommensurable. As was mentioned in section 5,
it leads in particular to quite complicated Re θ → ∞ asymptotics at sufficiently large Im θ .
While the analytic structure of T (θ) and T̃ (θ) remains essentially as described above (in
particular, I verified for many examples that all zeros of T and T̃ are on the real axis), the
structure of zeros in X(θ) becomes, as Im θ comes essentially large, rather chaotic. I hope
to turn again to this point in future studies. Let me mention only the following observation
concerning the small R (or large negative x) picture. If −x � 1, in the central region
x < θ < −x the function X(θ) matches extremely well the following expression:

X(θ) = cos(2QPθ)

[sinh(2πbP ) sinh(2πP/b)]1/2
, (7.3)

where P is an R-dependent parameter. Roughly, it can be estimated from the requirement that
X(θ) � 0 at θ = ±x, i.e. P = π/(−4Qx)+O(x−2). Note that substituting this approximation
in the expression of the effective central charge

ceff = 1 − 24P 2 (7.4)

(see [16] for the motivations), we arrive just at the leading UV logarithmic correction (2.16).
It is easy to verify that expression (7.3) satisfies exactly the functional X system (2.13). This
means, in particular, that it remains a valid approximation (at large −x) of X(θ) in the whole
complex strip x < Re θ < −x.

In fact along the lines of [16] and [17], a far better estimate of P can be found which takes
into account all logarithmic in R corrections to (2.16). In this framework, P is determined as
the first root of the transcendental equation

4QP log(R/2π) + i log(−SL(P )) = −π, (7.5)

where SL(P ) is the so-called Liouville reflection amplitude (for the arguments see [16]):

SL(P ) = −
(

πµ
�(b2)

�(1 − b2)

)−2iP/b
�(1 + 2ibP )�(1 + 2iP/b)

�(1 − 2ibP )�(1 − 2iP/b)
. (7.6)
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For example, in figure 14, the shape of X(θ) is compared with approximation (7.3) for x = −6
and two values of the parameter b2 = 0.8086 . . . and b2 = 0.1201 . . . . According to (7.6),
they correspond to P = 0.053 32 . . . and P = 0.040 52 . . . respectively.

In view of (7.3), the plateau heights of T (θ) and T̃ (θ) in the central region x < θ < −x

and x → −∞ can be estimated as

T0 = 2 cosh(2πbP ), T̃ 0 = 2 cosh(2πP/b), (7.7)

with the same P determined by (7.6).

7.4. Complex (staircase) values of b2

The staircase version of the TBA equation (2.3) (with the kernel (6.3)) is solved numerically in
the same way as in the ShG case. The structure of the solution has some interesting differences
from the case of real b. The peculiarities are more manifested if the parameter θ0 in (6.3)
is taken sufficiently large and the deep UV region −x � 1 is considered. At θ0 � 1, the
parameter b is close to imaginary unity and

Q = π√
θ2

0 + π2/4
(7.8)

is small.
In figure 15, two pictures of X(θ) on the real axis are plotted for x = −46 and x = −91,

both at θ0 = 20. The characteristic staircase behaviour (in fact very similar to that of Y (θ)

observed in [10]) is very apparent. It is also seen that expression (7.3) with the parameter P
determined as the solution to the staircase version of (7.5) (in the present case, P = 0.066 80 . . .

and P = 0.041 76 . . .) still follows in the central region the average behaviour of the solution.
The deviations (or, in other words, the corrections to approximation (7.3)) are now oscillating
and much bigger than those in the ShG case. At sufficiently large −x (many amounts of θ0),
the ascending part (starting from θ = x −θ0) of the staircase consists of a succession of almost
flat steps of constant width θ0, the heights being very well fitted by the expression
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Xn = sin(2QPn/θ0)

sin(2QP/θ0)
, (7.9)

with n = 0, 1, 2, . . . . It should be noted that for the reasons to be explained just below, in
the case of complex b, expression (7.3) does not give an approximation in the whole strip
x < Re θ < −x. Although (7.3) is still an exact solution to the staircase X system (6.6), its
validity is restricted to a certain parallelogram in the complex θ plane.

To see this in figure 16, I present the location of zeros of the function X(θ) (at θ0 = 20
and x = −46) in the upper half-plane. The picture is obviously reflected in the lower half-
plane by the symmetry of X(θ). We see several strings of zeros accumulating along the
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Figure 17. X(θ) along the imaginary axis (θ0 = 20, x = −46). Plot (b) is in the decilogarithmic
scale.
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Figure 18. Zeros of T (θ) at θ0 = 1 and different x.

lines Im θ = πn/2, n = 2, 3, 4, . . . , which start at the values Re θ2 = 47.1500 . . . , Re θ3 =
27.122 67 . . . ≈ Re θ2 − θ0, Re θ4 = 7.117 42 . . . ≈ Re θ3 − θ0, etc. There are opposite sets
of strings symmetric with respect to the imaginary axis. As n grows, they are shifted in steps
of −θ0 and θ0 respectively and meet each other at a certain value of n (n = 5 in the present
example). After that, continuous lines of dense zeros extending from −∞ to ∞ are formed.
In general, at large θ0, the first such line is already dense enough to produce the effect of
a ‘cut’ where the behaviour of X(θ) changes drastically. In our example, across the first
‘cut’ at Im θ = 5π/2, the absolute value of X(θ) jumps by many (105) orders of magnitude.
This is exemplified in figure 17 where X(θ) is plotted along the imaginary axis. Note that
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before Im θ = 5π/2, the function X(θ) is almost constant. As θ0 grows, this effect becomes
more and more dramatic and in the limit θ0 → ∞ the lines of zeros become real cuts. In
the forthcoming paper [18], I am going to comment more on this effect which plays a crucial
role in the analytic connection between the staircase behaviour at finite θ0 and the ‘sine-Gordon’
solutions corresponding to purely imaginary b = iβ.

In figure 18, the location of zeros of the periodic function T (θ) is shown at the ‘moderate’
value θ0 = 1 and different x. The picture is presented here just to demonstrate two observations:
(a) at staircase values of b, zeros of T (θ) are not exactly on the real axis but displaced slightly
to the complex plane, the displacement becoming negligible very quickly with the number of
zero, and (b) at x → −∞, the picture of zeros is ‘frozen’ in the sense that at x sufficiently
large the pattern of zeros is simply shifted by the amount �x in the θ plane as one changes
x → x − �x. As is usual in the TBA practice, it is convenient to study these frozen limiting
patterns substituting the original ‘massive’ TBA equation (2.3) by the massless version of it.
This is one of the motivations for the subsequent study (to be published [18]).

8. Concluding remarks

In the present study, I did not touch at all the important question about the R (or x) dependence
of the effective central charge (2.2) determined through the finite-size ground state energy (2.1).
The UV behaviour at x → −∞ is especially interesting since the analytic structure of ceff(R)

is quite unusual (like in (2.16)). The Liouville quantization condition (7.5) together with
(7.4) proves to be a very good approximation to the UV effective central charge behaviour.
However, while it takes into account all the ‘soft’ (logarithmic in R) contributions to the
asymptotic, there are certainly power-like corrections in R. The most important of them (at
least at real b) is the contribution of the ground state energy (1.9). Approximation (7.4) is
essentially improved if it is taken into account:

ceff = 1 − 24P 2 + 3(mR)2/(4π sin πp). (8.1)

Usually, after the ground state energy contribution is subtracted the reminder is a series in the
perturbative powers of R like in (2.15). In our present case, with the Lagrangian (1.1) naively
one could expect a series like

ceff − 3(mR)2/(4π sin πp) = 1 − 24P 2 +
∞∑

n=1

cn(P )
(
µR2+2b2)2n

, (8.2)

where the powers of R are predicted on dimensional arguments and the coefficients cn(P )

are something like the Coulomb gas perturbative integrals corresponding to the expansion
in µ around the vacuum of momentum P (therefore, they keep some smooth R dependence).
Although the leading correction n = 1 of order R4+4b2

is likely in agreement with the numerical
data (at least at sufficiently small b2), the whole structure (8.2) certainly contradicts duality.
The correct expansion must also contain the ‘dual’ corrections with powers R4+4/b2

. Of course,
many people immediately propose to add the dual interaction to the Lagrangian and consider
an action like

Atrivial =
∫ [

1

4π
(∂aφ)2 + 2µ cosh(2bφ) + 2µ̃ cosh(2b−1φ)

]
d2x, (8.3)

with µ̃ taken from (1.8) or sometimes introduced as an independent coupling. Simultaneous
expansion in both couplings would supposedly lead to a self-dual series

ceff − 3(mR)2/(4π sin πp) = 1 − 24P 2 +
∞∑

m,n=1

cm,n(P )µ2mµ̃2nR4Q(mb+n/b). (8.4)
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Coefficients cm,n(P ) are computed as the mixed Coulomb gas integrals which include both
kinds of charges produced by the expansion of action (8.3). Although the general structure of
(8.4) looks very likely, to my sense this scenario (which I call trivial) with a naive addition
of dual interactions (as in (8.3)) is not exactly in the spirit of duality. However, at present it
does not contradict any data and in fact should be verified. A check of this trivial scenario
(as well as any other one) requires very subtle measurements of the subleading power-like
corrections to the effective central charge as well as tedious calculations of mixed perturbative
integrals. I understand that this is a quantitative work which can hardly be replaced by general
speculations.

Of course, the definition of P as the solution to the quantization condition (7.5) is not
completely unambiguous. The power-like corrections in R (which are exponentially small
in 1/P ) can be arbitrarily redistributed between the expression for the observable effective
central charge (8.4) and the formulation of the quantization condition. In other words, one can
add corrections exponentially small in 1/P to (7.6) and consider this as a new definition of
P. The problem is that at present the parameter P is not precisely observable, i.e. it cannot be
directly measured in the TBA calculations (apart from the above-mentioned definition through
the observable finite-size effective central charge).

At this point, we arrive at the most intriguing question touched only slightly in the
present study. This is about the possibility of constructing the solutions Q±(θ) and Q̃±(θ) of
equation (4.12) with properties (4.13) and (4.14) such that the solution to (2.3) can be built as
combination (4.15). Had this been possible, we would have another unambiguous definition
of the parameter P as the Floquet index in (4.13). However, there are serious doubts that such
solutions exist in any sense, at least for rational values of b2. To clarify this point, in the
next publication [18] I will consider the massless version of the ShG TBA equation where the
parameter P in introduced from the very beginning instead of the scale parameter R. In this
context, solutions (4.13) can be found at least as a formal series for irrational values of b2 in
the way that the construction (4.15) can be given an exact sense.

In connection with the periodic structures encoded in the functions T (θ) and T̃ (θ), it
seems quite interesting to understand better the R dependence of the coefficients Tn and T̃ n

in expansion (4.9) or (6.9). I checked numerically the R → 0 asymptotic of T0 and T̃ 0. The
leading asymptotics of T0 and T̃ 0 (remember that for definiteness in this study, I always take
b � 1; in particular, the data discussed in this item were calculated at b = 0.3466) are very
well fitted by expressions (7.7) with P the solution to (7.5). The correction to (7.7) for T0 can
be set in the form

T0 = 2 cosh(2πbP ) + (mR/2π)4bQT
(1)

0 (P ), (8.5)

where T
(1)

0 (P ) is a smoothly varying function of P with a certain UV limit T
(1)

0 (0). As for T̃ 0,
the correction is better fitted as

T̃ 0 − 2 cosh(2πP/b) ∼ A(P )(mR/2π)α, (8.6)

with α again numerically close to 4bQ. The common TBA experience would expect from the
periodic structure of T̃ (θ) a much smaller correction ∼(mR/2π)4Q/b. A probable explanation
is that there are some power-like corrections to the Liouville quantization condition (7.5) so
that the ‘correct’ value of Pcorrect is off from P (calculated from (7.5)) by an amount of order
(mR/2π)4bQ

P = Pcorrect + P1,0(mR/2π)4bQ + · · · . (8.7)

With this Pcorrect, an asymptotic

T̃ 0 = 2 cosh(2πPcorrect/b) + (mR/2π)4Q/bT̃
(1)
0 (Pcorrect) + · · · (8.8)
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Table 1. Numerical values of the coefficients (8.10 ) compared with the CFT predictions (8.11) at
b2 = 0.346 5545 . . . .

x P t1
TBA tCFT

1 t̃TBA
1 t̃CFT

1

0 0.389 6985 −0.722 8948 −0.721 3854 −1.452 134 × 10−2 −1.437 650 × 10−2

−2 0.115 2693 −0.658 5087 −0.658 5077 −8.578 078 × 10−3 −8.578 008 × 10−3

−4 6.046 935 × 10−2 −0.654 2746 −0.654 2746 −8.272 562 × 10−3 −8.272 562 × 10−3

Table 2. The same as in table 1 in the ‘staircase’ region at θ0 = 10.

x P tTBA
1 tCFT

1

0 0.177 1863 0.071 1632−1.166 9319i 0.005 1770−1.189 6763i
−15 8.604 775 × 10−2 −0.066 0054−0.744 7625i −0.068 4458−0.744 5886i
−30 5.695 833 × 10−2 −0.070 8064−0.656 8688i −0.070 9316−0.656 8002i

must hold. If the power 4Q/b � 4bQ (like in the present experiment with 4Q/b =
37.31 . . . � 4bQ = 4.480 . . .), we can even try to relate the coefficient A in (8.6) to the
leading power correction to (7.5). As the corrections in (8.8) are much more suppressed at
R → 0, this seems reasonable.

It is easy to verify that the leading asymptotics of the higher coefficients Tn and T̃ n in
expansion (4.9) are of the form

Tn = (mR/2π)2bQ|n|T (0)
n (P ) + · · ·

T̃ n = (mR/2π)2Q|n|/bT̃ (0)
n (P ) + · · · , (8.9)

with T (0)
n (P ) and T̃ (0)

n (P ) regular at P = 0. I analysed quantitatively the functions T
(0)

1 (P )

and T
(0)

1 (P ). Motivated by the constructions of [14, 19], let us introduce slightly rescaled
functions

t1(P ) = T
(0)

1 (P )(Z(p))−2bQ, t̃1(P ) = T̃
(0)
1 (P )(Z(p))−2Q/b, (8.10)

with Z(p) defined in (1.7). In table 1, the values of t1(P ) and t̃1(P ) are compared with
the following analytic expressions borrowed from [19, 14] where these coefficients enter
the explicit constructions of the ‘sine-Gordon’ (i.e. related to purely imaginary values of b)
analogues of T (θ),

tCFT
1 (P ) = − 4π2�(1 + 2b2)

�2(b2)�(1 + b2 + 2ibP )�(1 + b2 − 2ibP )
,

t̃CFT
1 (P ) = − 4π2�(1 + 2b−2)

�2(b−2)�(1 + b−2 + 2iP/b)�(1 + b−2 − 2iP/b)
.

(8.11)

The TBA numbers are measured at b = 0.346 5545 . . . and different values of x. The same for
the staircase example θ0 = 10 is presented in table 2. The convergence is notably slower due
to much weaker suppression of the higher power corrections (Re(4 + 4b2) = 0.1926 . . . in this
case). The numbers quoted make it clear that an analytic continuation of the constructions of
[14, 19] for the ShG or staircase values of the parameter is quite relevant. The corresponding
‘CFT integrable structures’ will be shown to have a precise relation to the solutions of the
massless versions of ShG and staircase TBA equations [18] where the parameter P = Pcorrect

is fixed by construction.
I would like to mention a quite intriguing recent article [20] where the author arrived

at function (2.9) in a rather different context. It appears as the exact wavefunction of the
finite-size sinh-Gordon model in special ‘γ -coordinates’ which are the sinh-Gordon version
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of the Flaschka–McLaughlin variables (see [20] for the details). This again gives a motivation
to continue the study of the analytic structures related to the ShG TBA equation.
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